BreakThrough Digest Medical News |
| Mount Sinai discovers new liver cell for cellular therapy to aid in liver regeneration Posted: 05 Jun 2013 09:00 PM PDT Liver transplantation is the mainstay of treatment for patients with end-stage liver disease, the 12th leading cause of death in the United States, but new research from the Icahn School of Medicine at Mount Sinai, published in the online journal Cell Stem Cell today, suggests that it may one day become possible to regenerate a liver using cell therapy in patients with liver disease. Investigators discovered that a human embryonic stem cell can be differentiated into a previously unknown liver progenitor cell, an early offspring of a stem cell, and produce mature and functional liver cells.
“The discovery of the novel progenitor represents a fundamental advance in this field and potentially to the liver regeneration field using cell therapy,” said the study’s senior author, Valerie Gouon-Evans, PharmD, PhD, Assistant Professor, in the Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, at the Icahn School of Medicine at Mount Sinai. “Until now, liver transplantation has been the most successful treatment for people with liver failure, but we have a drastic shortage of organs. This discovery may help circumvent that problem.” In conjunction with the laboratory of Matthew J. Evans, PhD, from the Department of Microbiology at Icahn School of Medicine at Mount Sinai, investigators demonstrated the functionality of the liver cells generated from the progenitors, as the liver cells can be infected by the hepatitis C virus, a property restricted to liver cells exclusively. A critical discovery in this research was finding that the novel progenitor has a receptor protein on its cell surface called KDR, or vascular endothelial growth factor receptor 2, which until now, was thought to be restricted to endothelial cells that form vessels, the progenitors for endothelial cells and the progenitors blood cells. The research team showed that activation of KDR on these novel liver progenitors differentiates them into mature liver cells. Additionally, work in a mouse model revealed similar cells, indicating that the progenitors are conserved from mouse to human, and therefore, they must be “important cells with promising potential for cell therapy in treating liver disease,” explained Dr. Gouon-Evans. Next, the research team will examine specifically whether these liver cells obtained from human embryonic stem cells in a dish help repair injured livers in preclinical animal models of liver disease. ### Funding for this study was provided by The Black Family Stem Cell Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Robin Chemers Neustein Postdoctoral Fellowship, the American Cancer Society, and Pew Charitable Funds. About the Black Family Stem Cell Institute
The Black Family Stem Cell Institute is Mount Sinai’s foundation for both basic and disease-oriented research on embryonic and adult stem cells. The therapeutic use of stem cells is a promising area of medicine for the decades ahead and researchers are examining why stem cells function in certain types of niches, microenvironments, and pockets of activity. Investigators are working to break the code in stem cell communication by determining how stem cells signal one another and other cells. The new knowledge that will result from this research holds the promise of diagnostic and therapeutic breakthroughs. Studies show that it is possible to reprogram adult skin cells into cells that are very similar to embryonic stem cells. Once stem cells can be grown and differentiated in a controlled way to replace degenerated cells and repair tissues, medical science may then be able to diagnose and cure many intractable diseases at their earliest stages, such as type 1 diabetes, Parkinson’s disease, various cardiovascular diseases, liver disease, and cancer. For more information, visit http://icahn.mssm.edu/research/institutes/black-family-stem-cell-institute/about-us The Mount Sinai Medical Center
The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai. Established in 1968, the Icahn School of Medicine is one of the leading medical schools in the United States. The Medical School is noted for innovation in education, biomedical research, clinical care delivery, and local and global community service. It has more than 3,400 faculty in 32 departments and 14 research institutes, and ranks among the top 20 medical schools both in National Institutes of Health (NIH) funding and by U.S. News & World Report. The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation’s oldest, largest and most-respected voluntary hospitals. In 2011, U.S. News & World Report ranked The Mount Sinai Hospital 16th on its elite Honor Roll of the nation’s top hospitals based on reputation, safety, and other patient-care factors. Of the top 20 hospitals in the United States, Mount Sinai is one of 12 integrated academic medical centers whose medical school ranks among the top 20 in NIH funding and U.S. News & World Report and whose hospital is on the U.S. News & World Report Honor Roll. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 560,000 outpatient visits took place. Contact: Renatt Brodsky |
| Autism discovery paves way for early blood test and therapeutic options Posted: 04 Jun 2013 09:00 PM PDT Researchers at the JC Self Research Institute of the Greenwood Genetic Center (GGC), along with collaborators from Biolog, Inc. in California, have reported an important discovery in the understanding of autism which was published this week in Molecular Autism.
The study, led by GGC’s Director of Research, Charles Schwartz, PhD and Staff Scientist, Luigi Boccuto, MD, found that individuals with autism spectrum disorders (ASDs) showed significantly decreased metabolism of the amino acid L-tryptophan when compared to both typical controls and individuals with other neurodevelopmental disorders. Cells from individuals with autism metabolized L-tryptophan at a decreased rate whereas cells from individuals without autism did not show this change. Researchers also measured the expression of genes that are known to be involved in L-tryptophan metabolism in a small subset of patients with autism and found they also expressed some of the genes at lower levels than those without autism. “The important and immediate implication of this work is the development of a simple, early blood screening test for autism by measuring the metabolism of L-tryptophan using Biolog’s technology,” shared Dr. Boccuto. Biolog’s assay method, called Phenotype MicroArray technology, allows researchers to measure the ability of cells to generate energy from various biochemical nutrients, including L-tryptophan. Currently there are no laboratory tests that can accurately diagnose ASDs, which are estimated to affect 1 in 50 school-aged children in the US. Current diagnosis depends upon a developmental evaluation and parent interviews and can often not be made prior to 2-3 years of age. “A screening, and eventually, a diagnostic blood test for autism would be of immense value to families,” explained Dr. Schwartz. “An early, accurate diagnosis is key to providing effective and timely therapies for these patients and their families.” Dr. Boccuto added, “We also see tremendous potential that these findings will aid in our understanding of the molecular and metabolic bases of autism. Once we have a clear vision of what has gone awry within the tryptophan metabolism pathways, we can develop therapies to target and correct those problems at the biochemical level.” L-tryptophan is one of twenty amino acids used by cells to make protein. It is one of eight amino acids that cannot be made by the body, so it must be obtained from the diet. More importantly, L-tryptophan plays an important role in brain development and function as it is the precursor of key neurochemicals such as serotonin and melatonin which have already been linked to behavioral and neurodevelopmental problems. “This discovery leads us toward a possible unifying biochemical mechanism for ASDs which could ultimately lead to a treatment,” shared Dr. Schwartz. “Now that we have additional evidence that the features of ASDs may be related to the metabolic pathways involving L-tryptophan, we can focus further studies on determining at what point along those pathways the disruption occurs, which may vary from one patient to another. With treatments that target various points along the pathway, a modality that works for one patient may not work for another.” GGC’s autism research has been supported by funds from the South Carolina Department of Disabilities and Special Needs. Additional funding has been obtained from the National Institutes of Health to explore transitioning the research finding into a simple blood test for autism. Drs. Schwartz and Boccuto are currently evaluating the tryptophan metabolism in fresh blood samples from patients with ASDs and controls, utilizing customized Biolog plates. “We are thrilled that Biolog’s technology helped Dr. Schwartz in his pioneering research and that it has led to this breakthrough discovery,” said Barry Bochner, PhD, CEO at Biolog, Inc. ### About Greenwood Genetic Center The Greenwood Genetic Center (GGC), founded in 1974, is a nonprofit organization advancing the field of medical genetics and caring for families impacted by genetic disease and birth defects. At its home campus in Greenwood, South Carolina, a talented team of physicians and scientists provides clinical genetic services, diagnostic laboratory testing, educational programs and resources, and research in the field of medical genetics. GGC’s faculty and staff are committed to the goal of developing preventive and curative therapies for the individuals and families they serve. GGC extends its reach as a resource to all residents of South Carolina with satellite offices in Charleston, Columbia, Florence and Greenville. For more information about GGC please visit http://www.ggc.org. About Biolog, Inc.
Biolog is a privately-held company based in Hayward, CA, that continues to lead in the development of powerful new cell analysis tools for solving critical problems in biological, pharmaceutical, and biotechnological research and development. It is the world leader in phenotypic cell profiling. Biolog’s advanced phenotypic analysis technology is unique in its broad applicability to cells ? this includes bacterial cells and fungal cells as well as animal cells. More than 260 scientific publications and presentations document the effectiveness and productivity of PM technology. The PM product line adds to the innovative microbial identification products offered by the company, such as the new GEN III System. Biolog products are available worldwide, either directly from the company or through its extensive network of international distributors. Further information can be obtained at Biolog’s website, http://www.biolog.com. Contact: Lori Bassett |
| You are subscribed to email updates from BreakThrough Digest Medical News To stop receiving these emails, you may unsubscribe now. | Email delivery powered by Google |
| Google Inc., 20 West Kinzie, Chicago IL USA 60610 | |

